The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance
نویسندگان
چکیده
Endophytic bacteria have received attention for their ability to promote plant growth and enhance phytoremediation, which may be attributed to their ability to produce indole-3-acetic acid (IAA). As a signal molecular, IAA plays a key role on the interaction of plant and its endomicrobes. However, the different effects that endophytic bacteria and IAA may have on plant growth and heavy metal uptake is not clear. In this study, the endophytic bacterium Pseudomonas fluorescens Sasm05 was isolated from the stem of the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum alfredii Hance. The effects of Sasm05 and exogenous IAA on plant growth, leaf chlorophyll concentration, leaf Mg2+-ATPase and Ca2+-ATPase activity, cadmium (Cd) uptake and accumulation as well as the expression of metal transporter genes were compared in a hydroponic experiment with 10 μM Cd. The results showed that after treatment with 1 μM IAA, the shoot biomass and chlorophyll concentration increased significantly, but the Cd uptake and accumulation by the plant was not obviously affected. Sasm05 inoculation dramatically increased plant biomass, Cd concentration, shoot chlorophyll concentration and enzyme activities, largely improved the relative expression of the three metal transporter families ZRT/IRT-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) and heavy metal ATPase (HMA). Sasm05 stimulated the expression of the SaHMAs (SaHMA2, SaHMA3, and SaHMA4), which enhanced Cd root to shoot translocation, and upregulated SaZIP, especially SaIRT1, expression to increase Cd uptake. These results showed that although both exogenous IAA and Sasm05 inoculation can improve plant growth and photosynthesis, Sasm05 inoculation has a greater effect on Cd uptake and translocation, indicating that this endophytic bacterium might not only produce IAA to promote plant growth under Cd stress but also directly regulate the expression of putative key Cd uptake and transport genes to enhance Cd accumulation of plant.
منابع مشابه
The Endophytic Bacterium, Sphingomonas SaMR12, Improves the Potential for Zinc Phytoremediation by Its Host, Sedum alfredii
The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30...
متن کاملCharacteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance.
The mined ecotype of Sedum alfredii Hance has been identified to be a zinc (Zn) hyperaccumulator native to China. In the present article, the characteristics of cadmium (Cd) uptake and accumulation were compared with hydroponic experiments between the mined and the nonmined ecotypes of Sedum alfredii Hance. The results indicate that the plants of the mined ecotype (ME) have higher tolerance of ...
متن کاملFunctional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance
Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library s...
متن کاملTranscriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance
The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-t...
متن کاملTranscriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance
Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were...
متن کامل